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Abstract
We show that the description of c = 1 conformal field theory in terms of
quasiparticles satisfying fractional statistics can be obtained from the sine-
Gordon model with a chemical potential A, in the limit where A � M . These
quasiparticles are related to the excitations of the Calogero–Sutherland (CS)
model. We provide a direct calculation of their two-particle S-matrix using
Korepin’s method. We also reconsider the computation of the CS S-matrix in
terms of particles with fractional charge.

PACS numbers: 11.25.Hf, 11.55.−m, 73.43.−f

1. Introduction

Two-dimensional conformal field theories (CFTs) [1] and integrable quantum field theories
(IQFTs) [2] are usually treated in a completely different fashion despite the fact that they are
deeply related [3, 4]. A traditional starting point for the analysis of a CFT is the Hilbert space
for the system in finite geometry, organized in terms of representations of chiral algebras for
left and right moving excitations. On the other hand, IQFTs are conveniently described in
terms of asymptotic particle states and the associated scattering data, pertaining to the system
in infinite geometry. As a consequence of integrability the scattering is factorized, giving
rise to a factorized scattering theory (FST). The two-particle S-matrix completely determines
the on-shell dynamics as well as the off-shell properties such as correlation functions. In
fact, once the exact particle spectrum and S-matrix are known, one can use their spectral
representations together with the knowledge of the exact matrix elements, obtained using the
form factor approach [5], to compute correlation functions of local fields. The factorized
scattering approach is conceptually clear if the excitations in the field theory are massive,
while, strictly speaking, scattering of massless relativistic particles is not well defined in two
dimensions. Nevertheless, it has been found that, if the massless scattering is suitably defined,
the FST approach can be very fruitful also for massless IQFTs [6–8].

In the context of applications to condensed matter systems in one spatial dimension,
formulations of CFT in terms of FST become natural, both from a conceptual and from a
computational point of view. Such formulations involve the identification of a suitable set of

1 On leave from International School for Advanced Studies, Trieste.

0305-4470/04/144289+12$30.00 © 2004 IOP Publishing Ltd Printed in the UK 4289

http://stacks.iop.org/ja/37/4289


4290 D Controzzi and K Schoutens

Q

E=M Cosh θ

 L                                                                                           RE =(m/2) e                                      E  =(m/2) e−θ θ

µ>>M

    +µ ( µ     > M)

M−> 0

Figure 1. Schematic picture of the two different approaches to construct a quasiparticle
representation of the c = 1 CFT from the sine-Gordon model.

(massless) CFT quasiparticles with factorized scattering, and the study of their two-particle
S-matrix. For a particular class of c = 1 CFTs two interpretations in terms of FST have
been considered. The first one is closely related to the usual approach to massive FSTs
[6, 7]; the relevant S-matrix can be obtained as the massless limit, M → 0, of the sine-Gordon
(SG) S-matrix [9]. This particular description has been employed in the analysis of the edge-
to-edge tunnelling in fractional quantum Hall (fqH) samples [10]. The second approach is
intrinsic to the CFT [11, 12] and leads to a description in terms of a gas of quasiparticles
that satisfy fractional exclusion statistics [13]. These quasiparticles have been identified with
the excitations of the Calogero–Sutherland (CS) model in the continuum limit [16], and their
S-matrix was inferred on the basis of a set of thermodynamic Bethe ansatz (TBA) equations
[14, 15].

The aim of this paper is to explore the relationship between these two FST descriptions of
c = 1 CFT. We will show that they emerge as different massless limits of the SG theory (see
figure 1). In particular, the fractional statistics particles emerge as particle–hole excitations
of the SG model in the presence of a chemical potential, A → ∞ [18]. We provide a direct
calculation of their S-matrix using Korepin’s method [17]. We also reconsider the calculation
of the CS S-matrix [19] in terms of particles with fractional charge.

Our presentation is organized as follows. In the following section we review the standard
construction of interacting CFT quasiparticles via a massless limit of the SG theory. In
section 3 we introduce the fractional statistics quasiparticles in the CFT. Section 4 is devoted
to fractional excitations in the CS model. In section 5 we show how the fractional statistics
CFT quasiparticles can be obtained from the SG model in the presence of a chemical potential
A, in the limit A → ∞. We close with a brief discussion in section 6.

2. Massless limit of sine-Gordon: interacting quasiparticles

A quasiparticle description of c = 1 CFT can be obtained by taking the massless limit of a
SG model [9]. In this section we recall a few basic facts about the SG theory and on the limit
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M → 0. The SG action is given by

SSG =
∫

d2x

{
1

16π
(∂νϕ)2 − 2µ cos(βϕ)

}
(1)

where ϕ(x) is a scalar field in 2D Euclidean spacetime x = (x0, x1). This model possesses a
U(1) symmetry, generated by the charge

Q =
∫ ∞

−∞
j 0 dx1 = − β

2π

∫ ∞

−∞

∂ϕ

∂x1
dx1 (2)

where jµ = − β

2π
εµν∂νϕ is the Noether current. From the perturbed CFT point of view,

(1) can be considered as a Gaussian model

SGauss = 1

16π

∫
d2x(∂νϕ)2 (3)

perturbed by the relevant operator exp(±iβϕ) of scale dimension �β = β2.
The SG model is integrable and has been studied in great detail over the last 25 years.

The spectrum depends on the value of the coupling constant β2 or, alternatively, on ξ = β2

1−β2 .

For β2 < 1 the cosine term is relevant in the renormalization group sense and dynamically
generates a spectral gap M in the excitation spectrum. In the repulsive regime 1 < ξ < ∞
the spectrum contains only charged particles of charge Q = ±1, which are called solitons and
antisolitons. The operators that generate these particles are [21, 22]

Os,n(x) = ei n
4β

ϕ̃(x)+i sβ

n
ϕ(x) (4)

where the dual boson field, ϕ̃ is defined as

ϕ̃(x) =
∫ x

−∞
∂yϕ(x, y) dy. (5)

These operators are in general non-local, and carry a spin s and a topological charge n. For
s = 1/2, (4) corresponds to the bosonization formula for fermions of the massive thirring
model [21], 	(x) = O±1/2,1, 	

∗(x) = O±1/2,−1.
In the attractive regime 0 < ξ < 1 neutral soliton–antisoliton bound states, Bn, n =

1, 2, . . . < 1/ξ , called breathers, are formed and the spectrum becomes more complicated.
One usually distinguishes soliton, antisolitons and breathers by some internal indices

ε = s, s̄, Bn. The two-particle S-matrix, S
ε′

1,ε
′
2

ε1,ε2 , have been known for some time [2, 20].
We report here the soliton–soliton S-matrix, Sss = Sss

ss , which we need in the following:

Sss(θ) = −exp[−iδss(θ)] δss(θ) =
∫ ∞

0

sin(θt/π) sinh
( 1−ξ

2 t
)

t cosh
(

t
2

)
sinh

(
ξ t

2

) dt. (6)

Here the rapidity θ parametrizes the relativistic energy and momentum (e(p) =
√

p2 + M2)

p = M sinh θ e = M cosh θ. (7)

For large |θ |, δss(θ) behaves like

δss(θ) � ±π(p̃ − 1) θ → ±∞ (8)

with p̃ = 1/(2β2).
An appropriate quasiparticle basis for the c = 1 CFT can be obtained taking the massless

limit of SG particles [9, 10] described above. Formally this limit is constructed shifting
the rapidities θ → θ ± θ0/2 and taking the limits θ0 → +∞,M → 0 in such a way that
m = M exp(θ0/2) remains finite. In this way one obtains the massless dispersion relations



4292 D Controzzi and K Schoutens

e = p = (m/2) eθ , for right (R) movers and e = −p = (m/2) e−θ for left (L) movers (where
R and L movers are defined as p > 0 and p < 0 branches of the massless dispersion relation
e = ±p). Taking the same limit on the S-matrix one finds that the quasiparticle spectrum
remains the same, i.e. it will have R and L solitons, antisolitons and breathers. While in the
RR and LL sectors the S-matrix turns out to be the same as in the massive case, the RL (LR)
scattering is trivial, i.e. equal to one. This is obviously related to the conformal symmetry. The
presence of non-trivial RL scattering would signal a flow between critical points [6, 7]. The
massless limit thus gives a FST of the CFT, with interacting quasiparticles with internal degrees
of freedom and characterized by a non-diagonal S-matrix. The same result can be obtained
by starting from the S-matrix axioms for unitarity, crossing and Yang–Baxter factorization
directly for the massless particles [7].

At criticality the boson field, ϕ, can be decomposed into its holomorphic and
antiholomorphic parts as

ϕ = φ(z) + φ̄(z̄) ϕ̃ = φ(z) − φ̄(z̄) (9)

with z = x + iy (z̄ = x − iy). The operators associated with massless solitons (antisolitons)
take the form

Õs,n = ei( sβ

n
+ n

4β
)φ(z)+i( sβ

n
− n

4β
)φ̄(z̄) (10)

and the chiral components

Õ1/4β2,±1 = e±i 1
2β

φ(z) Õ−1/4β2,±1 = e∓i 1
2β

φ̄(z̄) (11)

correspond to the U(1) conformal primary fields, J and J̄ , introduced in the following section.
In this case the boson is compactified with a compactification radius R = 1/(2β).

3. CFT quasiparticles with fractional statistics

In this section we review the construction of a quasiparticle basis for (chiral) c = 1 CFT, which
is very different from the direct M → 0 limit of the SG particle basis. This basis is a special
example of a ‘CFT quasiparticle basis’ [11]. The idea behind the construction of the CFT
quasiparticles is to first classify the chiral primary fields, and then associate quasiparticles with
specific chiral primaries (usually those with the smallest conformal dimensions). To construct
an actual basis of the chiral Hilbert space one needs to impose specific rules on the modes
(momenta) of the quasiparticles that participate in a multi-particle state; these rules then lead
to a statement about a form of exclusion statistics satisfied by the quasiparticles.

The prototype of a CFT quasiparticle basis is the so-called spinon basis of the c = 1 SU(2)

and SU(N) invariant CFTs [23]; the more general construction was first outlined in [11]. The
particular example we deal with here is the c = 1 CFTs at compactification radius R2 = p/2.
In these theories, the chiral primary of smallest dimension carries a U(1) charge ± 1

p
, and one

may contemplate quasiparticle bases built out of these fractionally charged quanta. This is
particularly natural from the point of view of the fqH systems at filling fraction ν = 1

p
, which

have this particular CFT as effective edge theories [12].
The most natural way to build a CFT quasiparticle basis at c = 1, R2 = p/2, involves

quasiholes 	qh, of charge + 1
p

, and particles J , of charge −1. They are described by the
conformal primary fields

J (z) = e−i
√

p

2 φ(z) =
∑

t

J−t z
t−p/2 	qh(z) = ei 1√

2p
φ(z) =

∑
s

φ−sz
s−1/2p (12)

(note that the conventions used here are different from those in [12]). The J operators
correspond to the massless limit of soliton creation operators (11) with the identification
p = p̃ = 1/2β2.
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The independent multi-particle states that generate the chiral Hilbert space were identified
to be

|mM, . . . m1; nN . . . n1〉Q
≡ J−(2M−1)p/2+Q−mM

. . . J−p/2+Q−m1φ−(2N−1)/2p−Q/p−nN
. . . φ−1/2p−Q/p−n1|Q〉

(13)

with

mM � · · · � m1 � 0 nN � · · · � n1 � 0 (n1 > 0 if Q < 0) (14)

where |Q〉 (Q = −(p − 1), . . . ,−1, 0) is the lowest energy state of charge Q/p.
Using this basis, one can analyse the partition sum, and thereby the thermodynamic

properties, directly in terms of the quasiparticles J and φ. One then finds that the
thermodynamic equations take the form of the so-called IOW equations [14] that describe
the thermodynamics of a gas of particles satisfying fractional exclusion statistics. For the
general case with statistics matrix g = (gij ), the excitation energies, εi , and distribution
functions, n̄i , are determined by the following equations:(

λi − 1

λi

) ∏
j

λ
gij

j = eβ(µi−ε0) ≡ zi n̄i(εi) = zi

∂

∂zi

log
∏
j

λj (15)

with λi = (1 + e−εi ) being the one-particle grand canonical partition functions. For the case of
c = 1 one finds the following statistical parameters: gφφ = 1/p, gJJ = p and gφJ = gJφ = 0.

Summarizing, we see that the c = 1, R2 = p/2 chiral CFT is described by quasiparticles
with charge/statistics parameters

(
Q = 1

p
, g = 1

p

)
and (Q = −1, g = p) and with no mutual

statistics between the two.
It is well known [14, 15] that the IOW equations for statistics matrix gij agree with the

TBA equations for a ‘purely statistical’ two-particle S-matrix given by

Sij (θ) = −exp[π i(δij − gij ) sign(θ)] (16)

where sign(x) = |x|/x is the sign function (sign(0) = 0). Combining this with the above,
we tentatively identify the above CFT quasiparticle basis with a particle basis in the sense of
FST. In the remainder of this paper, we substantiate this claim by establishing the relation
between the CFT and this particular FST from two alternative points of view, which are the
Calogero–Sutherland model and an alternative (A → ∞) massless limit of the SG model.

4. S-matrix for fractional excitations in the CS model

The CFT quasiparticles described in the previous section are particularly natural if the CFT
is viewed as the continuum limit of a so-called Calogero–Sutherland model for particles with
inverse-square interaction, as the CFT quasiparticles can be identified with the fundamental
excitations of the CS model [16]. In this section we evaluate the S-matrix of the CS
quasiparticles using a method developed by Korepin [17]. Here and in the following we
will focus our attention only on the computation of the scattering amplitudes between right
movers. The computation of the L–L amplitude is equivalent and the result has to be the same
for symmetry reasons. A related calculation was done in [19]; here we use a different scheme
based on excitations with fractional charge.

The CS model [24–26] describes fermionic particles on a line whose interaction, for N
particles, is given by the following Hamiltonian:

H = −
N∑

j=1

∂2

∂x2
j

+
∑
j<k

2p(p − 1)

(xk − xj )2
. (17)
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In the low energy sector it is described by c = 1 CFT with compactification radius that, using
the conventions of section 3, is R2 = p/2 [16]. The model was solved with the Bethe ansatz
(BA) in [25]. Imposing periodic boundary conditions on the wavefunction, one obtains the
following quantization (BA) equations [25]:

Lλi = 2πIi +
N∑

j �=i

θ(λi − λj ) i = 1, . . . , N (18)

where

θ(λ) = (p − 1)π sign(λ). (19)

The set of integers or half-odd integers Ii is in one-to-one correspondence with a set of spectral
parameters that specify an eigenstate of the Hamiltonian. The total energy is parametrized as
E = ∑

i λ
2
i . In the presence of chemical potential, µ, the ground state is obtained by filling

the Fermi sea with rapidities |λ| <
√

µ ≡ λF , at distances λi − λj >
2π(p−1)

L
(this is the

first signal of a generalized exclusion statistics). The Fermi momentum λF can be written in
terms of the total number of λ in the condensate, NGS , as λF = πp(NGS − 1)/L. The integers
(half-odd integers) Ii vary in the interval

|Ij | < IGS
max (20)

with

IGS
max = 1

4π

∣∣∣∣∣λF L −
NGS∑
k

θ(+∞)

∣∣∣∣∣ = 1

2
(NGS − 1). (21)

There are different types of possible excitations.

I: Quasihole excitations. The lowest energy hole-type excitation corresponds to occupation
numbers N = NGS − 1. If we keep the Fermi momentum, λF , fixed to order one, the range
of the integers Ii changes according to (21)

Imax = IGS
max +

p − 1

2
. (22)

Then one has p−1 additional vacancies and one less λ, i.e. the excitations are characterized by
p parameters. We can say that this excitation corresponds to creating p quasiholes, λ1

h, . . . , λ
p

h ,
in the ground state, each having charge 1/p. We use the term quasihole to distinguish these
excitations from the charge-1 hole excitations that we will discuss in the following. The
p-quasihole excitations are similar to the S = 1 2-spinon excitations in the S = 1/2 Heisenberg
[27] or Haldane–Shastry models [19].

The BA equations relative to this type of excitation are the following:

Lλ̃i = 2πĨ i +
NGS+(p−1)∑

j �=i

θ(λ̃i − λ̃j ) −
p∑

a=1

θ
(
λ̃i − λh

a

)
(23)

where λ̃ indicates that the spectral parameters have slightly changed with respect to the
ground state distribution (λ̃i − λi ∼ O(1/L)). We follow the conventions of [28], take
Ĩ i − Ii = (p − 1)/2 for i = 1, . . . , NGS , and place the additional vacancies, λmin

1 , . . . , λmin
p−1,

close to the left Fermi point. In the thermodynamic limit λmin
i → −∞. As usual, we

characterize these excitations via the shift function [17]

Fhh(λi) = λ̃i − λi

λi+1 − λi

. (24)
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The equation defining Fhh(λ) can be obtained subtracting (23) from the ground state
distribution and using the fact that λ̃i − λi ∼ O(1/L),

Fhh(λi) +
1

2π

NGS∑
j �=i

K(λi − λj )Fhh(λj ) = p − 1

2
+

1

2π

p−1∑
k=1

θ
(
λi − λmin

k

) − 1

2π

p∑
a=1

θ
(
λi − λh

a

)
(25)

where K(λ) = θ ′(λ) = 2π(p − 1)δ(λ). In the thermodynamic limit it becomes

Fhh(λ) +
1

2π

∫ λF

−λF

dµK(λ − µ)Fhh(µ) = p − 1

2
+

1

2π
(p − 1)θ(+∞) − 1

2π

p∑
a=1

θ
(
λ − λh

a

)
.

(26)

Using the explicit form of K(λ) and θ(λ) we find

Fhh

(
λ1

h

) = p − 1

2p
λ1

h > λb
h(b = 2, . . . , p). (27)

II: Particle excitations. Particle excitations correspond to N = NGS + 1, where the additional
particle has rapidity |λp| > λF . The BA equations have the form

Lλ̃i = 2πĨ i +
NGS∑
j �=i

θ(λ̃i − λ̃j ) + θ(λ̃i − λp) (28)

Lλp = 2πĨNGS+1 +
NGS∑
j

θ(λp − λ̃j ). (29)

In the thermodynamic limit the integral equations for F have the form

Fpp(λ) +
1

2π

∫ λF

−λF

dµK(λ − µ)Fpp(µ) = θ(λ − λp) (30)

with the explicit solution

Fpp(λp) = (p − 1)

2
. (31)

From these two types of excitations it is possible to construct neutral excitations
corresponding to one particle and p quasiholes. The shift function associated with these
types of excitations is defined by the equation

Fph(λ) +
1

2π

∫ λF

−λF

dµK(λ − µ)Fph(µ)

= p − 1

2
+

1

2π
θ(λ − λp) +

1

2π
(p − 1)θ(+∞) − 1

2π

p∑
a=1

θ
(
λ − λh

a

)
(32)

from which

Fph(λp) = 0 mod 2π. (33)

We choose these types of excitations to describe the Hilbert space and construct the FST.
Below we explicitly calculate their S-matrix.

In [19] the physical excitations were constructed using a different scheme that corresponds
to allowing the Fermi momentum in (21) to vary of order O(1/L) when one creates a hole
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excitation. Within this scheme, changing the occupation numbers by one (NGS → NGS − 1)

produces a shift of Imax by one. In this way all the excitations have integer charge. On the
level of the BA the two descriptions seem to be complementary. For reasons that will become
clear later we prefer to use as basic excitations I and II, i.e. particles with integer charge but
quasiholes with a fractional charge. This approach is closer to the philosophy of [29, 30].

S-matrix for CS model. We now apply Korepin’s method [17] to compute the S-matrix
relative to the excitations I and II described above. The S-matrix is just a phase

Sab = exp(−iδab) (34)

where the two-particle scattering phase is equal to the phase, ϕab, obtained by moving the
particle a through the system in the presence of particle b minus the phase shift, ϕa , obtained
through the same process but in the absence of particle b

δab = ϕab − ϕa. (35)

Both phases can be obtained using the BA equations for the ground state and excitations. In
general, it turns out [17] that δab is related to the shift function via

δab(λi, λj )|λi>λj
= 2πFab(λi). (36)

Unfortunately, this approach cannot be applied directly to the quasihole excitations introduced
in the previous section. In fact, within the scheme we consider here, it is not possible to create
one- and two-quasihole excitations and thus it is not possible to evaluate directly the one- and
two-particle phase shift. Nevertheless it is possible to evaluate the total phase shift associated
with an excitation I (consisting of p quasiholes) as a whole. This corresponds to the phase shift
acquired by the fastest particle going across the other p − 1 quasiholes. Using factorization,
together with the fact that the resulting S-matrix is momentum independent, one can see that
the quasihole–quasihole phase shift, ϕhh, is given by

ϕhh

(
λ1

h, λ
2
h

)∣∣
λ1

h>λ2
h

= 2πFhh

(
λ1

h

)/
(p − 1) = π/p

(
λ1

h > λb
h, b = 2, . . . , p

)
. (37)

In order to compute δhh we should now subtract the one-particle phase shift, ϕh. Having no
direct access to ϕh, we subtract a reference phase, δ0(p),

δhh

(
λ1

h, λ
2
h

)∣∣
λ1

h>λ2
h

= 2πFhh

(
λ1

h

)/
(p − 1) − δ0(p) = π/p − δ0(p)(

λ1
h > λb

h, b = 2, . . . , p
)
. (38)

On the basis of the observation that individual quasiholes are local with respect to the CS
ground state, we anticipate that this reference phase will be an integer multiple of π . Below
we shall fix its value by an independent argument.

Following a similar reasoning we find the particle–quasihole phase shift,

δph

(
λp, λ1

h

) = 2πFph(λp)/p = 0 mod 2π. (39)

The particle–particle S-matrix can be computed in a more standard way [19] since one- and
two-particle excitations can be constructed explicitly. As a consequence, the two-particle
S-matrix will be completely determined. One finds

δpp

(
λ1

p, λ2
p

)∣∣
λ1

p>λ2
p

= 2πFpp

(
λ1

p

) = (p − 1)π. (40)

The identification of (38), (39) and (40) as phase shifts clearly requires λ1 > λ2. Analytic
continuation of these results to the sector λ1 < λ2 can be done using the unitarity condition of
the S-matrix: Sab(λ)Sab(−λ) = 1. From which it follows:

Sab(λ) = − exp[−iδab sign(λ)] a, b = p, h (41)
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where we have chosen a ‘fermionic’ normalization, Sab(0) = −1 [31]. In order to fix the
reference phase, δ0(p), in (38) we use the known duality of the CS Hamiltonian that, under
p → 1/p, maps particles into holes and vice-versa [32]. This implies δ0(p) = π , in agreement
with our expectation. Our full result for the two-particle S-matrix is in agreement with what
was found using different methods [12] as reported in section 3.

We note that the quasihole–quasihole scattering phase has a dependence typical of particles
with fractional statistics, this is the reason for the choice of the scheme above. Our results are
consistent, we have particles with fractional charge that satisfy fractional exclusion statistics.

5. Fractional CFT quasiparticles from sine-Gordon

Let us now consider the SG model in the presence of a chemical potential coupled to the
conserved charge. The Hamiltonian is shifted as

H(A) = HSG − AQ. (42)

The potential A works as infrared cut-off at scales, i.e. the excitations will have an energy
of order A. Therefore, since the cosine term in (1) is bounded, for A � µ(p+1)/2 the theory
is driven to the UV fixed point [18], where it is described by the c = 1 CFT (3). In the
presence of the chemical potential every soliton (antisoliton) acquires an additional energy
A(−A), while the breathers spectrum in not affected. For A > M the ground state is a soliton
condensate and the theory has massless excitations of the particle–hole type across the Fermi
sea. The other excitations, associated with antisolitons and breathers, have a gap, so we do
not need to consider them for what follows. Using Korepin’s method [17], we shall construct
the S-matrix for excitations over the soliton condensate in the limit A → ∞, and show that
they are free particles satisfying fractional statistics. These quasiparticles then provide a FST
description of the c = 1 fixed point. We will find that the S-matrix is the same as that for the
CS model constructed in the previous section.

We can repeat the analysis of the excitations and S-matrix done for the CS model in
section 4 for the SG model in the presence of the chemical potential A > M (42). Putting N
solitons on the space line of length L and imposing periodic boundary conditions one obtains
the following quantization equations [31]:

Lp(θi) = 2πIi +
N∑

j �=i

δss(θi − θj ) i = 1, . . . , N (43)

where δss(θ) and p(θ) are defined in (6) and (7), respectively. The presence of the chemical
potential induces also in this case a particle condensate and the ground state is obtained filling
the rapidities symmetrically around zero. In the thermodynamic limit the ground state energy
in the presence of the chemical potential is given by

E(A) − E(0) = M

2π

∫ B

−B

dθ cosh θε(θ) (44)

where ε(θ) is a non-positive function defined by the following equation:

ε(θ) +
∫ B

−B

dθ ′Kss(θ − θ ′)ε(θ ′) = M cosh θ − A ε(±B) = 0 (45)

with

Kss(θ) = 1

2π

dδss(θ)

dθ
. (46)
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In momentum space the kernel K̃ss(θ) = δ(θ) + Kss(θ) has a quite simple form

K̃ss(ω) =
∫ ∞

−∞
dθ eiωθ K̃ss(θ) = sinh π(1+ξ)ω

2

2 cosh πω
2 sinh πξω

2

(47)

and can be factorized as

K̃ss(ω) = 1

K+(ω)K−(ω)
(48)

with

K+(ω) = K−(−ω) =
√

2π(ξ + 1)

ξ
eiω�

�
(
i ξ+1

2 ω
)

�
(
i iξω

2

)
�

(
1
2 + iω

2

) (49)

analytic in the upper (K+) and lower (K−) half plane. In (49) � = ξ

2 log ξ − ξ+1
2 log(ξ + 1)

so that K+(ω) = 1 + O(1/ω). The limit A → ∞ corresponds to B → ∞ and equations (44),
(45) become [18]

E(A) − E(0) = M

4π

∫ B

−B

dθ eθ ε(θ) (50)

∫ B

−∞
dθ ′K̃ss(θ − θ ′)ε(θ ′) = M

2
eθ − A (51)

clearly describing a massless system.
The excitations can be studied using (43). They turn out to be similar to those discussed

in section 4 for the CS model. Also in this case we find quasihole excitations with fractional
charge, the reason being that δss(+∞) �= 1, and removing a θ produces a shift of Imax according
to (21). From equation (8) we see that this shift produces p̃ − 1 additional vacancies. Then
again an excitation will be characterized by p̃ parameters and can be interpreted as consisting
of p̃ quasiholes of charge 1/p̃ in the ground state. Below we show that, in the limit A → ∞,
the S-matrix relative to these excitations is again given by (38), (39) and (40), where p̃ replaces
the CS parameter p. With this identification the CS model and the UV limit of the SG model
give rise to the same quasiparticle S-matrix. For any finite A there are corrections to the CS
S-matrix that depend on the rapidities.

Let us first consider quasihole excitations. They will be characterized by the following
BA equations:

Lp(θ̃ i) = 2πĨ i +
NGS+(p̃−1)∑

j �=i

δss(θ̃ i − θ̃ j ) −
p∑

a=1

δss

(
θ̃ i − θa

h

)
(52)

and can be studied again introducing the shift function, F̃ hh(θi) = (θ̃ i − θi)/(θi+1 − θi),
satisfying the following equation (in the thermodynamic limit):

F̃ hh(θ) +
1

2π

∫ B

−B

dθ ′Kss(θ − θ ′)F̃ hh(θ
′)

= p̃ − 1

2
+

1

2π
(p̃ − 1)δss(+∞) − 1

2π

p̃∑
a=1

δss

(
θ − θa

h

)
. (53)

In the limit B → ∞, equation (53) can be solved with the Wiener–Hopf (WH) method (see,
for instance, appendix B of [18]). The procedure is quite standard and we report here only the
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essential steps. Shifting θ1
h → θ1

h + B and introducing fhh

(
θ1
h

) = Fhh

(
θ1
h + B

)
one can rewrite

(53) as

fhh

(
θ1
h

)
+

1

2π

∫ 0

−2B

dθ ′Kss

(
θ1
h − θ ′)fhh(θ

′)

= p̃ − 1

2
+

1

2π
(p̃ − 1)δss(+∞) − 1

2π

p̃−1∑
a=1

δss

(
θ1
h − θh

a + B
)
. (54)

As a consequence of the shift, quasihole excitations now correspond to θh
1 < 0. For B → ∞

equation (54) takes the form

fhh

(
θ1
h

)
+

1

2π

∫ 0

−∞
dθ ′Kss

(
θ1
h − θ ′)fhh(θ

′) = g∞(p̃) (55)

where on the RHS we have approximated δss(θ) with its asymptotics

g∞(p̃) = p̃ − 1

2
+

1

2π
(p̃ − 1)δss(+∞) − 1

2π

p̃−1∑
a=1

δ∞
ss = p̃ − 1

2
. (56)

This is the same driving term as for the CS model (26). We can solve this equation for
any θ although we only need it for θ < 0. We rewrite f (θ) as f (θ) = f +(θ) + f −(θ),
where f +(θ) = f (θ) for θ > 0 and zero otherwise, and f −(θ) = f (θ) for θ < 0. Fourier
transforming, equation (55) becomes

f +(ω) + K̃ss(ω)f −(ω) = g∞(p̃)δ(ω) (57)

and can be solved with the WH method, to give

f +(ω) = g∞(p̃)
K+(0)

K+(ω)

1

ω + i0
f −(ω) = g∞(p̃)K+(0)

K−(ω)

ω − i0
. (58)

We can now obtain Fhh

(
θ1
h

)
by Fourier transforming equation (58)

Fhh

(
θ1
h

) =
∫

dω eiω(θ1
h +B)f −(ω) ∼ g∞(p̃)K+(0)K−(0) = g∞(p̃)

K̃ss(0)
= p̃ − 1

2p̃
(59)

where we have omitted terms of order O(exp(−B)). This is the same as for the CS model with
the identification p̃ = p, as previously anticipated. Following the same steps as in section 4,
we obtain also δ̃ph = 0 and δ̃pp = (p̃−1)π . Although it is not possible to show it on the basis
of the BA, it is quite natural to argue that these excitations are generated by the operators (12).

6. Discussion

In this paper we show how fractional statistics quasiparticles in specific c = 1 CFTs can
be obtained from an associated sine-Gordon model. Introducing a chemical potential, A,
and driving the system to the UV fixed point by taking A → ∞, we constructed massless
excitations with fractional charge and computed their S-matrix. These excitations correspond
to the excitations of the Calogero–Sutherland model associated with the same CFT. Their S-
matrix is momentum independent, giving rise to the notion of a free gas of particles with
generalized statistics. This formulation of the c = 1 CFT can be contrasted with the
formulation obtained via a massless limit, M → 0, of the same sine-Gordon theory. Our
result thus sheds some light on the relation between different factorized scattering theories
associated with a c = 1 CFT. It will be worthwhile to explore similar relations for FST
formulations of more general (rational) CFTs.
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